Affiliation:
1. Department of Pediatrics (L.S.L.A., W.A.C., B.D.T., K.A.S.), Department of Physiology and Biophysics (E.O.F.), Department of Anesthesiology (K.A.S.), and Department of Bioengineering (K.A.S.), University of Washington, Seattle, Washington 98195
Abstract
A method to simultaneously measure oxygenation in vascular, intracellular, and mitochondrial spaces from optical spectra acquired from muscle has been developed. In order to validate the method, optical spectra in the visible and near-infrared regions (600–850 nm) were acquired from solutions of myoglobin, hemoglobin, and cytochrome oxidase that included Intralipid as a light scatterer. Spectra were also acquired from the rabbit forelimb. Three partial least squares (PLS) analyses were performed on second-derivative spectra, each separately calibrated to myoglobin oxygen saturation, hemoglobin oxygen saturation, or cytochrome aa3 oxidation. The three variables were measured from in vitro and in vivo spectra that contained all three chromophores. In the in vitro studies, measured values of myoglobin saturation, hemoglobin saturation, and cytochrome aa3 oxidation had standard errors of 5.9%, 7.4%, and 12.2%, respectively, with little cross-talk between the in vitro measurements. In the progression from normal oxygenation to ischemia in the rabbit forelimb, hemoglobin desaturated first, followed by myoglobin, while cytochrome aa3 reduction occurred last. The ability to simultaneously measure oxygenations in the vascular, intracellular, and mitochondrial compartments will be valuable in physiological studies of muscle metabolism and in clinical studies when oxygen supply or utilization are compromised.
Subject
Spectroscopy,Instrumentation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献