Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Investigation of the Postmortem Metabolic Process in Rat and Human Kidney Cortex

Author:

Tuo Ya1,Huang Ping1,Ke Yong1,Fan Shuanliang1,Lu Qinyang1,Xin Bo1,Wang Zhenyuan1

Affiliation:

1. Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China (Y.T., P.H., Y.K., S.F., Q.L., B.X., Z.W.); and Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, PR China (Y.T., P.H.)

Abstract

Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy has been applied to study the short and long term postmortem metabolic processes in rat and human kidney cortexes. The goals of this project were as follows: (1) to investigate the changes of ATR spectra in different rat and human tissues after death, (2) to explore the best mathematical model with different band absorption ratio changes to determine the postmortem interval (PMI), and (3) to establish a preliminary human postmortem ATR spectra database. There were three different types of metabolic changes after death based on the spectral results: (1) the intensities of some bands increased continuously (e. g., C–H stretching region), (2) the intensities of other bands decreased continuously (e.g., PO2 symmetric stretching), and (3) other bands remained relatively stable (e.g., C–OH bending, CO–O–C antisymmetric stretching). The band absorbance ratios for rats were found to display either a significant increase or decrease with increasing time after death. Of the absorbance ratios of the various bands investigated to find the best fit with the cubic model function in rats, the A1652/ A1396 ratio showed the strongest correlation ( R2 = 0.937). Comparison of the rat kidney cortex spectra with selected human postmortem cases showed similar postmortem metabolic changes. In conclusion, ATR FT-IR spectroscopy was shown to be a convenient and reliable method of determining short and long term postmortem intervals by simultaneously monitoring several specific parameters, although these observations have yet to be applied at forensic scenes by further field studies.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3