Dynamics within Site Selectively Templated and Tagged Xerogel Sensor Platforms

Author:

Bright Frank V.1,Holthoff Ellen L.1

Affiliation:

1. Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000 (F.V.B.); and United States Army Research Laboratory, RDRL-SEE-O, 2800 Powder Mill Road, Adelphi, Maryland 20783

Abstract

In a nitrobenzo-2-oxa-1,3-diazole (NBD) -based, 9-anthrol-responsive site selectively templated and tagged xerogel (SSTTX) sensor platform, there are two reporter molecule site types (responsive and non-responsive) that are responsible for the observed fluorescence signals. These NBD sites function independently. Site 1 alone binds the target analyte and yields an analyte-dependent signal. This signal arises from analyte binding decreasing the photo-induced electron transfer (PET) efficiency between a strategically placed amine residue and the excited NBD reporter molecule within the template site. Site 2 does not respond to analyte, it is not fully formed, and it manifests itself as a background signal. In an n-octyl residue-free SSTTX, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼260 cP and ∼540 cP, respectively. These local microviscosity values are substantially greater in comparison to free NBD dissolved in THF (η = 0.46 cP at 298 K, φ ∼ 25 ps). As the SSTTX n-octyl content is increased, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼360 cP and ∼760 cP, respectively. This behavior is consistent with the n-octyl chains crowding the cybotactic region surrounding the site 1 NBD reporter molecules. This n-octyl-induced site 1 “crowding” is also associated with improved analyte binding to site 1 and better overall SSTTX analytical performance.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3