Quantitative Analysis of Hexahydro-1,3,5-trinitro-1,3,5, Triazine/Pentaerythritol Tetranitrate (RDX–PETN) Mixtures by Terahertz Time Domain Spectroscopy

Author:

Sleiman Joyce Bou1,Bousquet Bruno2,Palka Norbert3,Mounaix Patrick2

Affiliation:

1. Bordeaux University, IMS, CNRS UMR 5218, 33400 Talence, France

2. Bordeaux University, CELIA, CNRS UMR 5107, 33400 Talence, France

3. Military University of Technology, Institute of Optoelectronics, 2 Kaliskiego Str., Warsaw 00-908, Poland

Abstract

Absorption spectra of explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), and mixtures of both were measured by terahertz time domain spectroscopy (THz-TDS). Chemometrics was applied to quantitative analysis of terahertz absorbance spectra obtained in transmission mode to predict the relative amounts of RDX and PETN in samples containing pure components or their mixtures. This analysis was challenging because significant spectral overlap prevented identification of each product fingerprint. Partial least squares (PLS) regression models were thus applied to the terahertz spectra. A comparison between the so-called PLS1 and PLS2 algorithms was performed to predict the PETN concentrations in mixture samples. PLS2 demonstrated better predictive ability than PLS1 with RM SE value lower than 3.5 mg for 400 mg total weight pellets. Moreover, the influence of the highly overlapping spectral frequency band was investigated by reducing the original 0.2–3 THz (6–100 cm−1) spectral band to 1.8–3 THz (60–100 cm−1). The predictive ability was quite similar in both cases, highlighting the excellent ability of chemometrics to perform quantitative analysis when applied to THz-TDS data, even in the case of highly overlapping spectra.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3