Temperature-Dependent Fourier Transform Infrared Spectroscopy and Raman Mapping Spectroscopy of Phase-Separation in a Poly(3-hydroxybutyrate)–Poly(l-Lactic Acid) Blend

Author:

Unger Miriam12,Sato Harumi1,Ozaki Yukihiro1,Fischer Dieter3,Siesler Heinz W.4

Affiliation:

1. School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan

2. Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53211 USA

3. Leibniz-Institute for Polymer Research, 01069 Dresden, Germany

4. Department of Physical Chemistry, University of Duisburg–Essen, 45117 Essen, Germany

Abstract

Variable-temperature Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopic mapping measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)–poly(l-lactic acid) (PLA) (50:50 wt.%) polymer-blend film as a function of temperature between 25 and 175 °C. Because of the better band separation compared with the fundamental absorptions, the first overtones of the v(C=O) bands of PHB and PLA were used to evaluate the temperature-dependent FT-IR images as PLA–PHB and PHB–PLA band-ratio contour plots, respectively. From the visualization of the band-ratio FT-IR images, it could be derived that even beyond the melting point of PLA (145 °C), the lateral position and the geometry of the PHB-rich and PLA-rich phases were retained up to 165 °C. Furthermore, the FT-IR images derived during and after the melting of PHB (174 °C) provided an interesting insight into the homogenization process of the polymer melt. By exploiting its higher lateral resolution, valuable additional information became available from the Raman mapping measurements. Based on the Raman data, the scenario of phase-separated PHB-rich and PLA-rich domains of about 50 iμ size, based on the FT-IR imaging measurements, had to be revised. Instead, the originally interpreted PHB-rich and PLA-rich domains are actually clusters of much smaller grains. Additionally, the Raman images measured in the same temperature interval revealed that the clusters of small PHB-rich grain structures aggregated as a function of temperature increase. These investigations prove that FT-IR and Raman imaging in combination with variable-temperature measurements can provide new (and so far unavailable) insights into structural phenomena of phase-separated polymer blends.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3