Handheld X-ray Fluorescence Spectrometers: Radiation Exposure Risks of Matrix-Specific Measurement Scenarios

Author:

Rouillon Marek1,Kristensen Louise J.1,Gore Damian B.1

Affiliation:

1. Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia

Abstract

This study investigates X-ray intensity and dispersion around handheld X-ray fluorescence (XRF) instruments during the measurement of a range of sample matrices to establish radiation exposure risk during operation. Four handheld XRF instruments representing three manufacturers were used on four smooth, flat-lying materials of contrasting matrix composition. Dose rates were measured at 10, 20, 30, and 40 cm intervals every 30° around the instrument at 0 and 45° from the horizontal, as well as vertically from the instrument screen. The analysis of polyethylene recorded dose rates 156 times higher (on average) than steel measurements and 34 times higher than both quartz sand and quartz sandstone. A worst-case exposure scenario was assumed where a user analyses a polyethylene material at arms reach for 1 h each working day for one year. This scenario resulted in an effective body dose of 73.5 μSv, equivalent to three to four chest X-rays (20 μSv) a year, 20 times lower than the average annual background radiation exposure in Australia and well below the annual exposure limit of 1 mSv for non-radiation workers. This study finds the advantages of using handheld XRF spectrometers far outweighs the risk of low radiation exposure linked to X-ray scattering from samples.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference16 articles.

1. Hall G., Buchar A., Bonham-Carter G. “Quality Control Assessment of Portable XRF Analysers: Development of Standard Operating Procedures, Performance on Variable Media and Recommended Uses”. Canadian Mining Industry Research Organization (CAMIRO) Exploration Division. 2011. 1–171.

2. Portable X-Ray Fluorescence as a Rapid Technique for Surveying Elemental Distributions in Soil

3. Rayleigh and compton scattering contributions to x-ray fluorescence intensity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3