Determination of Antimony by Surface-Enhanced Raman Spectroscopy

Author:

Panarin Andrei Yu.1,Khodasevich Inna A.1,Gladkova Olga L.2,Terekhov Sergei N.1

Affiliation:

1. B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezalezhnasti Ave., 68, 220072, Minsk, Belarus

2. Belarusian State University of Informatics and Radioelectronics, P. Brovka Str. 6, 220013 Minsk, Belarus

Abstract

A highly sensitive method for the detection and quantitative evaluation of antimony(III) using the surface-enhanced Raman scattering (SERS) technique is demonstrated. The method is based on the analysis of SERS spectra intensity of antimony bound to phenylfluorone (Sb-PhF). Phenylfluorone is widely used as an organic reagent for the spectrophotometric determination of some heavy metals. For the SERS experiment a Sb-PhF complex was adsorbed onto the silvered porous silicon substrate. The significant degradation of the SERS signal was observed during measurements in the air. The time evolution of SERS spectra at ambient and degassed conditions was investigated to find an optimal regime for SERS measurements. The limit of Sb detection in degassed samples was determined to be near 1 ng/mL, which is one order of magnitude less than that attainable by the photometric approach. The linear range of the method to Sb(III) was found to a mass concentration range of 1–10 ng/mL. This approach permits an absolute quantity of Sb(III) to be detected at the picogram level (∼50 pg). It is remarkable that a very small sample volume (50 μL) is required for SERS analysis. Moreover this technique offers high selectivity owing to the distinctive vibrational features for the metallorganic complex and to the resonance character of Raman spectra. The proposed SERS-based detection of Sb is a fast and highly sensitive method for use in environmental and industrial waste monitoring as well as for forensic science to determine gunshot residue. We expect that the approach reported herein can be further extended to develop new detection techniques for other heavy metals.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3