A New Approach to Investigate Thin Surface Layers of Polymers: Fatigue Analysis of Polycarbonate

Author:

Nagai Naoto1,Nishiyama Itsuo2,Shimada Hideo2,Ito Hidemi2,Endo Kazunaka3

Affiliation:

1. Industrial Research Institute of Niigata Prefecture, 1-11-1 Abumi Nishi, Niigata 950-0915, Japan

2. Daipla Wintes Co., Ltd., 247-4 chome, Sakuragi-cho, Omiya-ku, Saitama 220-0854, Japan

3. Tokyo University of Science, 2641, Noda-shi, Yamazaki, Chiba 278-8510, Japan

Abstract

A new technique to investigate chemical structures of very thin surface (mesoscopic scale) layers of polar polymers is proposed. The chemical structures and conformations of ~100 nm-thick slabs that were obtained from a polymer surface were studied by infrared spectroscopy combined with a previously developed thin sample preparation system. The dielectric functions were calculated using oscillator models from reflection spectra of the slabs, which were cut with a diamond blade. The molecular movements caused by shear force perturbations after the cutting process (“flexed state”) were observed. The technique was applied to analyze the changes in the chemical structure of bisphenol A polycarbonate (BPAPC) throughout a bending cyclic fatigue test. Three characteristic stages of structural changes in the flexed state under the cyclic fatigue test were observed. Our technique has the potential to clarify the intrinsic structures of solid polymers such as the degree of entanglement and the tendency for order or disorder caused by the surrounding chain interaction.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3