Affiliation:
1. Department of Physics, Florida A&M University, Tallahassee, FL 32310 USA
Abstract
Laser-induced breakdown spectroscopy (LIBS) was used as a method to monitor the evolution of C, hydrogen-α, carbon–carbon, and carbon–nitrogen spectral emissions from atmospheric recombination in a specific set of organic materials. Ablated samples were composed of a series of linear chain dicarboxylic acids with two to seven C atoms. Accumulated pulses of a focused neodymium-doped yttrium aluminum garnet (Nd:YAG) Q-switched laser beam operated at 532 nm generate a plasma in air at the sample surface. In this work, a dual-pulse LIBS technique was used to improve signal strength by enhancing the nanosecond LIBS plasma with CO2 transverse-excited breakdown in atmosphere laser pulses with an operating wavelength of 10.6 μm. Through a time-resolved analysis, we demonstrate the correlation between the signal strength of selected emissions and the number of C atoms in the linear chain. We also illustrate the effects that these constraints, along with the presence of a chiral C in the chain, have on the peak intensities of the individual lines with respect to each other by comparing the increase or nonexistence of certain spectral lines as we increase the number of C atoms in the linear chain.
Subject
Spectroscopy,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献