Accuracy of Noninvasive Glucose Sensing Based on Near-Infrared Spectroscopy

Author:

Liu Jin1,Liu Rong1,Xu Kexin1

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Abstract

The noninvasive sensing of the blood glucose concentration is usually based on optical, electrical, or acoustical signals induced by blood glucose; these signals are extremely weak and subject to fluctuations caused by the variation in the body or surroundings. Therefore, it is challenging to detect blood glucose noninvasively with high accuracy, and no successful accurate and noninvasive clinical application has been reported. We found that there are two key measurement issues to be addressed: systematic errors, such as the errors induced by the drifts of devices or by variations in body temperature, among others, are too large to guarantee the trueness of measurement at present; and random disturbances in repeated tests, such as disturbances associated with variations in the human–machine interface, pulses, and the thermal noise of the devices, cause larger repeated measurement errors and compromise precision. Recent novel reference measurements based on differential near-infrared (NIR) spectroscopy are considered promising for solving the systematic error issue by establishing matched references, collected at another detection site or at another time, and subsequently differencing to remove the common systematic errors. However, differencing weakens the signal of interest itself and enlarges the effects of the second issue, random disturbances affecting the precision. It is understood that only reference measurements that can meet the precision requirement will be promising for future applications. Therefore, this study quantitatively evaluates the precision of the main differential NIR spectroscopy measurements considering similar conditions and minimized random disturbances. The precision of the measurements under these conditions should represent their optimal precision levels. After the evaluation, noninvasive glucose-sensing methods that hold promise for future clinical application are proposed. Finally, the evaluation criteria could be a reference for the noninvasive detection of other physiological components.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3