Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups

Author:

Rao Epuru Nageswara1,Sunku Sreedhar1,Rao Soma Venugopal1

Affiliation:

1. University of Hyderabad, Advanced Centre of Research in High Energy Materials (ACRHEM), Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India

Abstract

The technique of femtosecond laser-induced breakdown spectroscopy (FLIBS) was employed to investigate seven explosive molecules of nitropyrazole in three different atmospheres: ambient air, nitrogen, and argon. The FLIBS data illustrated the presence of molecular emissions of cyanide (CN) violet bands, diatomic carbon (C2) Swan bands, and atomic emission lines of C, H, O, and N. To understand the plasma dynamics, the decay times of molecular and atomic emissions were determined from time-resolved spectral data obtained in three atmospheres: air, argon, and nitrogen. The CN decay time was observed to be longest in air, compared to nitrogen and argon atmospheres, for the molecules pyrazole (PY) and 4-nitropyrazole (4-NPY). In the case of C2 emission, the decay time was observed to be the longest in argon, compared to the air and nitrogen environments, for the molecules PY, 4-NPY, and 1-methyl-3,4,5-trinitropyrazole. The intensities of the CN, C2, C, H, O, and N emission lines and various molecular/atomic intensity ratios such as CN/C2, CNsum/C2sum, CN/C, CNsum/C, C2/C, C2sum/C, (C2 + C)/CN, (C2sum + C)/CNsum, O/H, O/N, and N/H were also deduced from the LIBS spectra obtained in argon atmosphere. A correlation between the observed decay times and molecular emission intensities with respect to the number of nitro groups, the atmospheric nitrogen content, and the oxygen balance of the molecules was investigated. The relationship among the LIBS signal intensity, the molecular/atomic intensity ratios, and the oxygen balance of these organic explosives was also explored.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3