Femtosecond and Nanosecond Dual-Laser Optical Emission Spectroscopy of Gas Mixtures

Author:

Lin Cheng-Hsiang1,Liang Zhi1,Zhou Jun2,Tsai Hai-Lung1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409 USA

2. Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 USA

Abstract

A method employing an integrated femtosecond (fs) and nanosecond (ns) dual-laser system was developed to generate plasma with desired radical species from gas mixtures via a fs laser pulse and then to excite selected radical species to higher electronic states using a wavelength-tunable ns laser pulse. An optical spectrometer was used to measure the emission spectra and identify the transition from the excited electronic state to the ground state. The proposed technique has been demonstrated for an N2–CO2 mixture with various time delays between the two fs and ns pulses. The results have indicated that the population of selected radical species at the excited electronic state can be increased using the subsequent ns laser pulse, which also enhances the intensity of emission spectra allowing better identifications of the radical species. This technique holds a promise of detection and identification of signature plasma species, particularly for trace elements and long-distance standoff detections.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3