Pre-Visual Diagnostics of Phosphorus Deficiency in Mini-Cucumber Plants Using Near-Infrared Reflectance Spectroscopy

Author:

Shi Jiyong1,Zou Xiaobo1,Zhao Jiewen1,Mao Hanping2,Wang Kailiang1,Chen Zhengwei1,Huang Xiaowei1,Holmes Mel3

Affiliation:

1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Key Laboratory of Modern Agricultural Equipment and Technology, Zhenjiang, Jiangsu 212013, China

3. School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

The morphological symptoms of phosphorus (P) deficiency in the leaves of mini-cucumber plants at early stages of development have features similar to that of early stage development in healthy plants. That similarity may lead to inappropriate visual diagnostics of phosphorus deficiency in analyzed samples. Because the differences in spectral properties of leaf tissues between phosphorus-deficient and healthy plants can be demonstrated, the feasibility of using near-infrared (NIR) spectroscopy for rapid and nondestructive diagnostics of phosphorus deficiency in mini-cucumber plants was investigated. Leaf reflection spectra in the wavelength range of 10 000-4000 cm−1 were measured before the appearance of morphological changes caused by phosphorus deficiency. Least-squares support vector machine (LS-SVM), a method for recognizing patterns, was applied to identify phosphorus-deficient plants. Parameters (γ, σ 2 ) of LS-SVM were optimized by cross-validation, and several conventional, two-class classification methods such as linear discrimination analysis and K-nearest neighbors were also used comparatively for identification. Identification rates in excess of 86% were achieved with the LS-SVM model for both the training set and the prediction set. The overall results indicated that NIR spectra combined with LS-SVM could be used efficiently for pre-visual diagnostics of phosphorus deficiency in mini-cucumber plants.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3