Presymptomatic Detection of Powdery Mildew Infection in Winter Wheat Cultivars by Laser-Induced Fluorescence

Author:

Bürling Kathrin1,Hunsche Mauricio1,Noga Georg1

Affiliation:

1. University of Bonn, Institute of Crop Science and Resource Conservation (INRES)-Horticultural Science, Auf dem Huegel 6, D-53121 Bonn, Germany

Abstract

The sensor-based monitoring of diseases under controlled conditions establishes an objective tool that allows a better understanding of the pathogen–plant interactions in different situations. The purpose of our work was to implement the presymptomatic detection of powdery mildew on wheat leaves shortly after fungus inoculation by spectral and time-resolved laser-induced fluorescence spectroscopy. In the general scope of plant phenotyping, we hypothesized that it is possible to discriminate between wheat genotypes that are either resistant or susceptible to powdery mildew. According to our results, the presymptomatic detection of powdery mildew on wheat leaves was accomplished, irrespective of genotype, as early as one day after inoculation using the fluorescence amplitude ratio F451:F522. Similarly, the ratios F451:F522, F522:F687, and F522:F736 of the half-bandwidth are also appropriate parameters. Furthermore, in the spectral range between 410 nm and 620 nm, the mean lifetime was significantly longer in inoculated leaves than it was in control leaves. Finally, the short-term (10–12 hour) increase of the fluorescence mean lifetime at 530 nm and 560 nm following the inoculation suggests that the speed of the plant reaction might be associated to its resistance to the pathogen. Based on this information, we conclude that determinations of ultraviolet, laser-induced fluorescence intensity and lifetime are suitable approaches to presymptomatically detect powdery mildew on wheat leaves one day after inoculation.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3