Investigation of Time-Dependent Phenomena by Use of Step-Scan FT-IR

Author:

Palmer Richard A.1,Chao James L.1,Dittmar Rebecca M.1,Gregoriou Vasilis G.1,Plunkett Susan E.1

Affiliation:

1. Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346

Abstract

The development, during the last decade, of modern step-scan interferometry instrumentation has allowed FT-IR to be applied to the study of time-dependent phenomena in ways not previously possible, because of the problems of uncoupling the spectral multiplexing from the temporal domain in the continuous-scan FT-IR mode. Specifically, the time regime from tens of nanoseconds to tens of milliseconds has been accessible to time-domain measurements to only a very limited degree with continuous-scan instrumentation and not at all for modulation-demodulation (frequency-domain) experiments in this time range. The step-scan technique not only works very well in this time regime and for slower phenomena, but is only prevented from application to faster processes by the signal strength, the speed of available detectors, the intensity of sources, and the speed and sophistication of the electronics. This paper surveys the various types of experiments which are either enhanced by use of step-scan FT-IR methods or are only possible by use of these techniques. The principles of step-scan instrumentation are reviewed, particularly those of retardation control, signal generation, and data acquisition, as well as the place of step-scan FT-IR relative to other techniques of dynamic vibrational spectroscopy. The importance of path difference (phase) modulation, particularly in frequency-domain measurements, the extraction and use of the signal phase, the creation of 2D FT-IR spectra, and the strategies for acquisition of both time- and frequency-domain data in the step-scan mode are discussed and illustrated.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3