Affiliation:
1. Optics and Fluid Dynamics Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
Abstract
The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2 in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found that the SNR was at a local minimum at a spectral resolution of 4 cm−1. As a result of the investigations, we suggest that the specific spectral resolution which smears out the vibrational-rotational line structure of the smaller molecules should be considered to be low (4 cm−1 for CO).
Subject
Spectroscopy,Instrumentation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献