Infrared Intensities of Liquids XV: Infrared Refractive Indices from 8000 to 350 cm−1, Absolute Integrated Intensities, Transition Moments, and Dipole Moment Derivatives of Methanol-d, at 25°C

Author:

Bertie John E.1,Zhang Shuliang L.1

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Abstract

This paper reports infrared absorption intensities of liquid methanol- d, CH3OD, at 25°C, between 8000 and 350 cm−1 Measurements were made by multiple attenuated total reflection spectroscopy with the use of the CIRCLE cell, and by transmission spectroscopy with a variable-path-length cell with CaF2 windows. The results of these two methods agree excellently and were combined to yield an imaginary refractive index spectrum, k(ν˜) vs. ν˜, between 6187 and 350 cm−1. The imaginary refractive index spectrum was arbitrarily set to zero between 6187 and 8000 cm−1 where k is always less than 2 × 10−6, in order that the real refractive index can be calculated below 8000 cm−1 by Kramers-Krönig transformation. The results are reported as graphs and as tables of the real and imaginary refractive indices between 8000 and 350 cm−1, from which all other infrared properties of liquid methanol- d can be calculated. The accuracy is estimated to be ± 3% below 5900 cm−1 and ± 10% above 5900 cm−1 for the imaginary refractive index and better than ± 0.5% for the real refractive index. In order to obtain molecular information from the refractive indices, the spectrum of the imaginary polarizability multiplied by wavenumber, ν˜ vs. ν˜, was calculated under the assumption of the Lorentz local field. The area under this ν˜ spectrum was separated into the integrated intensities of different vibrations. Molecular properties were calculated from these integrated intensities—specifically, the transition moments and dipole moment derivatives of the molecules in the liquid, the latter under the harmonic approximation. The availability of the spectra of both CH3OH and CH3OD enables the integrated intensities and the molecular properties of the C-H, O-H, O-D, and C-O stretching and CH3 deformation vibrations to be determined with confidence to a few percent. Further work with isotopic molecules is needed to improve the reliability of the integrated intensities of the C-O-H(D) in-plane bending, H-C-O-H(D) torsion, and CH3 rocking vibrations.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3