Determination of Carbon Monoxide and Carbon Dioxide Concentrations at Temperatures between 295 and 1250 K Using Fourier Transform Infrared Absorption Spectroscopy

Author:

Medvecz Patrick J.1,Nichols Kenneth M.1

Affiliation:

1. The Institute of Paper Science and Technology, 575 14th St. N.W., Atlanta, Georgia 30318

Abstract

Fourier transform infrared absorption spectroscopy has been used for the determination of CO and CO2 gas concentrations in a high-temperature cell. The gas mixtures analyzed consisted of CO, CO2, and nitrogen; among the samples, the concentration of CO was varied between 0.5 and 4.7% and the CO2 ranged between 0.7 and 4.9%. The temperature of the gas cell was varied between 295 and 1250 K, while the pressure was maintained at atmospheric. Throughout this temperature range, 123 absorption spectra were recorded in the gas cell at a nominal instrument resolution of 0.25 cm−1. The absorption lines used for the concentration analysis consisted of 22 P-branch CO vibrational-rotational lines from the fundamental absorption band, and 19 R-branch CO2 vibrational-rotational lines from the v3 fundamental absorption band. All of the peak heights used for the concentration calculations were first numerically corrected for photometric errors resulting from the finite resolution of the FT-IR instrument. The corrected peak heights were assumed to follow the Bouguer-Lambert law at a constant furnace temperature. Fifty-one of the spectra were used to determine the temperature dependence of the line strength for each of the 41 lines. The experimentally obtained line strengths were then used to determine the gas concentrations of all 123 spectra. The calculated concentrations were compared to NDIR instrument measurements of the gas composition exiting the flow-through high-temperature gas cell. Comparison of the NDIR measured gas concentrations with the calculated concentrations from absorption spectra yielded an average accuracy of 3.6% for the CO spectra and 4.9% for the CO2 spectra.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3