Affiliation:
1. Lawrence Berkeley Laboratory, Berkeley, California 94720 U.S.A. (G.L.K., R.E.R.); Lawrence Livermore National Laboratory, Livermore, California 94550 U.S.A. (R.J.S.); and Kernforschungszentrum, Institute for Radiochemistry, 76021 Karlsruhe, Germany (J.B., H.-J.A.)
Abstract
A coiled fiber-optic chemical sensor has proven to be effective for the remote detection of volatile organic compounds, such as trichloroethylene (TCE), 1,1-dichloroethylene (DCE), and gasoline, in aqueous solutions. The analyte diffuses into the hydrophobic cladding and evanescent wave absorption spectra are measured in the near-infrared (1600–1850 nm) without the presence of the water absorption bands. In order for fiberoptic chemical sensors to operate effectively in remote environments, the influence of temperature on the sensor response must be known. The C-H bonds of the polysiloxane cladding material also have absorption bands in the near-infrared (NIR). Changes in temperature will change the density (i.e., concentration of C-H bonds) and refractive index of the cladding. Due to these effects, a temperature change of only 3°C from the reference has been shown to significantly alter the background absorbance. The temperature-dependent background absorption is found to be linear with the slope, and the values are proportional to the absorption coefficient of the cladding material. The intercept of the absorbance vs. temperature plot is found to follow the first derivative of the fiber sensor transmission spectrum. Evanescent wave absorption spectra of TCE solutions have been corrected for temperature.
Subject
Spectroscopy,Instrumentation
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献