Classification of Green Coffees by FT-IR Analysis of Dry Extract

Author:

Dupuy Nathalie1,Huvenne Jean Pierre1,Duponchel Ludovic1,Legrand Pierre1

Affiliation:

1. Laboratoire de Spectrochimie, LASIR, CNRS, Bât. C5, Ecole Universitaire D'Ingénieurs de Lille, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France

Abstract

Principal component analysis (PCA) of infrared spectra has been used as a classification method for the green beans of coffee from various origin. Before spectral acquisition, sampling methods were tested for 45 samples, and we chose dry extract of water-soluble compounds on SiCaF2 supports. After PCA of the first derivatized spectra, the first four loadings were examined. The scores of the second principal component appear to be directly correlated by their sign to the species arabica or robusta. This result allows an easy classification. In the same way, the pigmentation is well characterized into two groups on the scattergram of the samples with respect to the PC1 and PC3 components. Another feature of this method is that the analysis of the spectral data in terms of residual variance separate components which are correlated with properties. This approach provides assistance in the interpretation of infrared spectra of complex mixtures.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference15 articles.

1. Gilbert R. H., Nutrition and Behavior, Miller S. A., Ed. (Franklin Institute Press, Philadelphia, 1981), pp. 145–150.

2. Stefanucci A. and Clinton W. P, and Hamell H., in Encyclopedia of Chemical Technology, Othmer Kirk, Ed. (John Wiley and Son, New York, 1988), 3rd ed., Vol. 6, pp. 513–522.

3. Quantitative analysis of latex in paper coatings by ATR-FTIR spectroscopy

4. Classification of Condensed-Phase Infrared Spectra by Substructures Using Principal Components Analysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3