Characterization of a 22 mm Torch for ICP-AES

Author:

Horner Julie A.1,Hieftje Gary M.1

Affiliation:

1. Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Abstract

A 22 mm torch has been developed and characterized for use in inductively coupled plasma atomic emission spectrometry. A stability curve (radio-frequency power vs. outer-gas flow rate) was constructed for the modified torch which indicates that the larger torch can be operated at flow rates and powers similar to those for an 18 mm torch. Four operating parameters were optimized by means of a simplex algorithm. Several criteria for optimization were used, including net signal intensity for Ca(II); signal-to-background noise (S/NB) for Ca(II), Mg(II), and Fe(II); and the Mg(II)/Mg(I) line-intensity ratio. The results from these simplex optimizations are compared. Mg(II)/Mg(I) was used as the final criterion for optimization for both the 22 mm and the conventional 18 mm torches. Two-dimensional spatial images of the larger plasma were compared with those of a conventional plasma (18 mm) for a variety of plasma emission features. Detection limits were determined in two ways for a suite of analytes under conditions optimized for the Mg(II)/Mg(I) ratio. The 18 mm torch affords the better limits of detection by an averaged factor of 1.5 because its smaller volume gives a lower background level. Finally, nitrogen molecular-ion emission maps were collected from both the 22 mm and a conventional 18 mm plasma as an indicator of the degree of air entrainment in the plasma. Several spatial regions of the plasma have been evaluated on the basis of the local intensity of N2+ emission for their applicability for use in atomic emission and atomic mass spectrometry. The 22 mm torch shows a larger region in and around the central channel of low or zero N2+ emission and so may be better suited for sampling into a mass spectrometer.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3