Spectroscopic Investigation of Atmospheric-Pressure Counterflow Diffusion Flames Inhibited by Halons

Author:

McNesby K. L.1,Daniel R. G.1,Widder J. M.1,Miziolek A. W.1

Affiliation:

1. U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066

Abstract

Infrared spectra of atmospheric-pressure counterflow diffusion flames inhibited by halons (a contraction of halogenated hydrocarbons) and a few of their potential replacements are measured with the use of Fourier transform spectroscopy. Results are compared to spectra of similar flame systems examined at low pressure. It is shown that, for atmospheric-pressure counterflow diffusion methane/air flames inhibited by CF3Br, CF2H2, and CF4, the two major fluorine-containing combustion products are HF and CF2O. A correlation is shown between flame inhibition efficiency and CF2O formation for atmospheric-pressure counterflow diffusion flames inhibited by these halons. For low-pressure premixed flames inhibited by CF3Br, HF appears to be the only fluorine-containing combustion product, even at relative dopant levels 15 times higher than those capable of extinguishing atmospheric-pressure counterflow diffusion flames. The results of these experiments illustrate the need for flame inhibitant testing over a wide spectrum of flame conditions, while providing further evidence that, for atmospheric-pressure inhibition of real fires by halons, CF2O may be a good indicator of inhibitor efficiency when that inhibition is at least partly accomplished by chemical scavenging of reactive combustion intermediates.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference16 articles.

1. Using Powder Packs for Passive Fire Protection of Military Vehicles

2. Burgess D., Tsang W. and Zachariah M. R, and Westmoreland P. R. “Fluorinated Hydrocarbon Flame Suppression Chemistry”, preprint of paper presented at the American Chemical Society National Meeting (207th), San Diego, California, March (1994), pp. 141–146.

3. Temperature measurement technique for high-temperature gases using a tunable diode laser

4. The Effect CF3Br on Radical Concentration Profiles in Methane Flames

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3