Method to Determine Tissue Fluorescence Efficiency in vivo and Predict Signal-to-Noise Ratio for Spectrometers

Author:

Trujillo E. V.1,Sandison D. R.1,Utzinger U.1,Ramanujam N.1,Mitchell M. Follen1,Richards-Kortum R.1

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Texas, Austin, Texas, 78712. (E.V.T., U.U., N.R. and R.R-K.); Department 2665, Sandia National Laboratories, Albuquerque, New Mexico, 87185 (D.R.S.); and Department of Gynecologic Oncology, UT MD Anderson Cancer Center, Houston, Texas, 77035 (M.F.M.)

Abstract

Recent clinical trials have demonstrated the potential of fluorescence spectroscopy for in vivo diagnosis of pathology. There is significant potential to reduce the cost and complexity of instrumentation to measure tissue spectra; however, careful analysis is required to maximize performance and minimize cost. One measure of performance is the signal-to-noise ratio (SNR) of the resulting data. This paper describes a method to predict the SNR of a given optical design for a particular tissue application. In order to calculate the expected SNR, two pieces of information are required: (1) the throughput and inherent noise of the system and (2) a quantitative relationship between the illumination energy and the resulting tissue fluorescence available for collection, which we define as the tissue fluorescence efficiency (FE). We present a method to calculate the fluorescence efficiency of tissue from in vivo measurements of tissue fluorescence. We report FE measurements of the normal and precancerous human cervix in vivo at 337, 380, and 460 nm excitation. We also present and evaluate a method to estimate the throughput and noise of various spectrometers and predict the expected SNR for tissue spectra by using the measured tissue FE. For squamous cervical tissue, as the degree of the disease increases, FE decreases, and as the excitation wavelength increases, FE decreases. Cervical tissue FE varies more than two orders of magnitude, depending on the tissue type and on the excitation wavelength used. Our SNR calculations, based on measured values of tissue FE, demonstrate agreement within a factor of 1.3 of the measured SNR on average. This method can be used to estimate the performance of different spectrometer designs for clinical use.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3