Application of Multivariate Calibration Techniques to Quantitative Analysis of Bandpass-Filtered Fourier Transform Infrared Interferogram Data

Author:

Mattu Mutua J.1,Small Gary W.1,Arnold Mark A.1

Affiliation:

1. Center for Intelligent Chemical Instrumentation, Department of Chemistry, Clippinger Laboratories, Ohio University, Athens, Ohio 45701-2979 (M.J.M., G.W.S.); and Department of Chemistry, University of Iowa, Iowa City, IA 52242 (M.A.A.)

Abstract

Multivariate calibration models are developed that allow quantitative analysis of short segments of Fourier transform infrared (FT-IR) interferogram data. Before the interferogram segments are submitted to partial least-squares (PLS) regression analysis, a bandpass digital filter is applied to isolate a narrow range of frequencies that correspond to an absorption band of the target analyte. This adds frequency selectivity to the analysis, thereby overcoming the principal obstacle to the direct use of interferogram data for quantitative analysis. With the optimization of the frequency response function of the filter, as well as the position and length of the interferogram segment employed, calibration models are developed that compare well with those computed with conventional absorbance spectra. This methodology is demonstrated by developing calibration models for determining glucose in an aqueous buffer matrix over the physiologically relevant concentration range of 1–20 mM. Through the use of a time-domain filter designed to isolate the modulated interferogram frequencies corresponding to the glucose C–H combination band at 4400 cm−1, a three-factor PLS calibration model is computed on the basis of interferogram points 601–850. This model is characterized by standard errors of calibration (SEC) and prediction (SEP) of 0.3311 and 0.6950 mM, respectively. The best model obtained in a thorough analysis of the corresponding absorbance spectra was also based on three PLS factors. This model was characterized by values of SEC and SEP of 0.2396 and 0.6115, respectively. In addition to achieving similar calibration and prediction results to the spectral-based model, the interferogram-based method has the advantage of requiring no background measurement of the sample matrix. Furthermore, since the analysis is based on only a 250-point segment of the interferogram, a reduction in the instrumentation and data collection requirements is realized.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3