Pilot Study of the Analytical Performance of the Pulsed Hollow Cathode Discharge Emission Source

Author:

Cai Xiangjun1,Williams J. C.1

Affiliation:

1. Department of Chemistry, University of Memphis, Tennessee 38152

Abstract

Proper conditioning of the hollow cathode by sputtering is critical to the analytical performance of the hollow cathode. A pulsed discharge procedure was developed to condition the 1.5- × 5-mm stainless steel cathode. A scanning electron microscope was used to study the surface structure resulting from the conditioning. The resulting hollow bottom was bulb-shaped and the surface was mirror-like, very smooth, and shiny. The emission intensities from smooth cathodes were greater that those from the rough ones. The precision obtained here was 3–5% for Na, 5–8% for Li, and 4–10% for K. Three working curves for each element were made on different days with different cathodes that had been conditioned in the same manner for 4 h by sputtering. The three working curves virtually coincided when plotted in the same figure, demonstrating the precision and reproducibility from day to day of the hollow cathode discharge method as developed in this laboratory. The 3-σ detection limits calculated from slopes of working curves are 0.32 pg, 0.35 pg, and 3.2 pg for Na, Li, and K, respectively.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3