A Novel Detector for Gas Chromatography Based on UV Laser-Produced Microplasmas

Author:

Morris Jeffrey B.1,Forch Brad E.1,Miziolek Andrzej W.1

Affiliation:

1. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066

Abstract

The use of UV laser-produced microplasmas for the detection of analyte molecules in the effluent gases of a gas chromatograph is described. The microplasmas are formed when a carbon-containing analyte is present in the carrier gas flow but not in the carrier gas alone. The microplasmas are produced by using the 193-nm output of the ArF excimer laser, with only modest pulse energies (10 mJ) required. Three means for detecting the presence of the microplasmas have been effected and are compared: optogalvanic (plasma electron) detection, photoacoustic (blast wave) detection, and photometric (plasma emission) detection, particularly of electronically excited carbon atoms at 248 nm. The relative responses of these three techniques have been determined for microliter injection of acetylene into the helium flow. Present limits for acetylene with the use of the optogalvanic, photoacoustic, and photometric techniques are 500, 500, and 10 ng, respectively. Optimization of these techniques is expected to improve the detection limits by 2–4 orders of magnitude. The virtues of this detector include the fact that it requires no flame and that it is sensitive to carbon-containing species such as CO and CO2.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference15 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3