Evaluation of a Correction for Photometric Errors in FT-IR Spectrometry Introduced by a Nonlinear Detector Response

Author:

Richardson Robert L.1,Yang Husheng1,Griffiths Peter R.1

Affiliation:

1. Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

Abstract

For strongly absorbing bands measured with a Fourier transform infrared (FT-IR) spectrometer, the effects of a nonlinear detector response must be eliminated before Beer's law linearity can be achieved. An empirical method for greatly reducing the effect of detector nonlinearity on FT-IR Beer's law spectra measured by using an FT-IR spectrometer equipped with a mercury-cadmium-telluride (MCT) detector is investigated. This first-order analytical function has been applied to correct nonlinear vapor-phase spectra and statistically evaluated for validity for spectral regions above the detector cutoff. In addition, a series of second-order functions has been evaluated to investigate the possibility that the transmittance scale is slightly nonlinear even after the first-order correction has been applied. Any improvement caused by the second-order functions was not statistically significant.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiometric nonlinearity and the correction strategies for infrared hyperspectral benchmark sounder;Earth and Space: From Infrared to Terahertz (ESIT 2022);2023-01-31

2. Multi-spectral investigation of ozone: Part I. Setup & uncertainty budget;Journal of Quantitative Spectroscopy and Radiative Transfer;2022-03

3. Review of photodetectors characterization methods;Bulletin of the Polish Academy of Sciences Technical Sciences;2022-02-10

4. The Usefulness of Spectroscopic Simulations;Applied Spectroscopy;2020-03

5. Response-surface fits and calibration transfer for the correction of the oxygen effect in the quantification of carbon dioxide via FTIR spectroscopy;Analytica Chimica Acta;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3