Affiliation:
1. Department of Electrical and Computer Engineering (G.P.A., R.J.) and Center for Non-invasive Diagnosis (R.H.G.), University of New Mexico, Albuquerque, New Mexico 87131
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a low-energy technique which suffers from poor inherent signal-to-noise ratio (SNR). In a clinical setting, it is often desirable to study small regions of tissue in patients to aid in the detection and diagnosis of disease states. Analysis of the smaller regions, however, degrades the SNR further and renders conventional spectral estimation techniques such as the discrete Fourier transform useless. We demonstrate the utility of two complex eigenvector-based algorithms, Multiple Signal Classification (MUSIC) and Minimum Norm, in the detection of resonances within small sample volumes. The results indicate that these methods are clearly superior to Fourier transform-based techniques currently available on clinical NMR scanners.
Subject
Spectroscopy,Instrumentation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献