Factors Affecting Sensitivity in Lightpipe Gas Chromatography Fourier Transform Infrared Interfaces

Author:

Brown R. S.1,Lennon J. J.1

Affiliation:

1. Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Abstract

A variety of experimental parameters are evaluated which are important in maximizing the sensitivity of the combination of gas chromatography and Fourier transform infrared spectrometry (GC/FT-IR) for the detection and identification of mixtures of volatile organic compounds. Basic parameters can be optimized such as the mirror scan velocity and the detector bias current employed to reduce the overall system noise, thus improving the signal-to-noise ratio (S/N) of the resulting spectra. Quantitation of the resulting trade-off between using a lower-noise narrow-spectral-range mercury-cadmium-telluride (MCT) detector versus a wider-spectral-range MCT detector with somewhat higher noise characteristics is examined. An optical design incorporating a variable aperture to reduce the amount of unmodulated infrared radiation from the heated lightpipe which reaches the detector is evaluated. Linearity in sample absorbance is shown to be unaffected by the amount of unmodulated heat reaching the detector despite the nonlinear behavior of the detector observed as interferogram signal loss at elevated detector temperatures. By flowing a fixed concentration of isobutane in helium through the lightpipe, one can monitor the absorbance; it is observed to change significantly from ambient to operating temperature, mostly due to temperature broadening of the absorbance bands. However, no discernible change in the absorbance is observed as a function of the amount of unmodulated light reaching the detector. Finally, lightpipe dimensions are examined as they affect sensitivity. A comparison of the performance of a 1.1-mm i.d. and a 0.6-mm i.d. lightpipe shows increased chromatographic performance of the latter, as expected, but similar signal losses with temperature. Little or no evidence for the counter Jacquinot (sometimes referred to as the Hirschfeld) advantage is found, and reasons for this inconsistency are discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3