Polarization Measurements on Raman Scattering from Spherical Droplets

Author:

Fung K. H.1,Tang I. N.1

Affiliation:

1. Environmental Chemistry Division, Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973

Abstract

The polarization of Raman scattering from a single spherical droplet has been measured for the first time. Experiments are performed in a quadrupole cell, in which a charged liquid droplet is trapped by electro-dynamic forces. Raman scattering intensities at the 90° angle are measured for polarizations both parallel and perpendicular to that of the incident beam. The depolarization ratios thus obtained for the droplets are shown to be identical to those measured in the bulk samples. The present results indicate unequivocally that the depolarization ratio of Raman scattering is a molecular property and, as such, is not affected by the boundary conditions of the spherical droplets. Subsequently, the technique is applied to the chemical characterization of solution droplets. The presence of ion pairs in supersaturated strontium nitrate and bisulfate solutions is dramatically verified by distinct changes in the depolarization ratios.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3