Atmospheric-Pressure Helium Inductively Coupled Plasmas for Elemental Mass Spectrometry

Author:

Zhang Hao1,Nam Sang-Ho1,Cai Mingxiang1,Montaser Akbar1

Affiliation:

1. Department of Chemistry, The George Washington University, Washington, D.C. 20052-0001

Abstract

Analytical and fundamental characteristics of helium inductively coupled plasma mass spectrometry (He ICPMS) were explored for atmospheric-pressure plasmas generated in a 13-mm He ICP torch with the use of a prototype ICPMS equipped with an analogue detector. Four sets of operating conditions were identified for the detection of four categories of elements at levels lower than or similar to those of the Ar ICPMS. In general, detection limits of He ICPMS were improved by two to four orders of magnitude for metals, compared to results from our previous study with the same torch. For the easy-to-atomize elements (Li, Na, K, Ga, Rb, In, Cs, Tl, Pb, and Bi), the detection limits ranged from 0.1 to 7 pg/mL at 500–600 W forward power. Detection limits of the fourth-period transition metals (Cr, Mn, Fe, Co, Ni, and Cu), i.e., elements subject to the spectral interferences in Ar ICPMS, were 4 to 100 pg/mL at a power level of 560–700 W. The detection limits of hard-to-atomize elements (Ti, V, Sr, Y, Rh, Pr, Tm, Th) ranged from 4 to 90 pg/mL at 800 W. For hard-to-ionize elements (As, Se, Br, Sn Sb, I), detection limits of 0.05 to 1 ng/mL were obtained at 820 W. Ion kinetic energies were measured under two diverse sets of operating conditions. At 600 W, the ion kinetic energies were very low (2.6–6.6 eV for mass range 39–209 amu), indicating the absence of a secondary discharge at the sampler tip of the MS interface. The gas-kinetic temperature estimated in this measurement was 600 K for the 600-W He ICP. In contrast, very high ion kinetic energies (31–66 eV for mass range 51–232 amu) were obtained at 800 W. The estimated plasma potential and gas kinetic temperature were 22 V and 3500 K, respectively. Ion kinetic energies of polyatomic ions were slightly lower than those of atomic ions at the same mass, suggesting that polyatomic ions were formed in the low-temperature zones of the He ICP.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The inductively coupled plasma as a source for optical emission spectrometry and mass spectrometry;Sample Introduction Systems in ICPMS and ICPOES;2020

2. Laser ablation particle beam glow discharge time of flight mass spectrometry for the analysis of halogenated polymers and inorganic solid material;Spectrochimica Acta Part B: Atomic Spectroscopy;2009-05

3. Alternative and Mixed Gas Plasmas;Inductively Coupled Plasma Spectrometry and its Applications;2007-11-12

4. Fundamental Aspects of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS);Inductively Coupled Plasma Spectrometry and its Applications;2007-11-12

5. High efficiency nebulization for helium inductively coupled plasma mass spectrometry;Spectrochimica Acta Part B: Atomic Spectroscopy;2006-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3