Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin

Author:

Fu Fen-Ni1,Deoliveira Daniel B.1,Trumble William R.1,Sarkar Hemanta K.1,Singh Bal Ram1

Affiliation:

1. Department of Chemistry, University of Massachusetts Dartmouth, N. Dartmouth, Massachusetts 02747 (F.-N.F., D.B.D., B.R.S.); Department of Bacteriology and Biochemistry, University of Idaho, Moscow, Idaho 83844 (W.R. T.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 (H.K.S.)

Abstract

A Fourier transform infrared spectroscopic method has been developed to analyze protein secondary structure by employing the amide III spectral region (1350–1200 cm−1)· Benefits of using the amide III region have been shown to be substantial. The interference from the water vibration (∼1640 cm−1) in the amide I region can be avoided when one is using the amide III band; furthermore, the amide III region also presents a more characterized spectral feature which provides easily resolved and better defined bands for quantitative analysis. Estimates of secondary structure are accomplished with the use of Fourier self-deconvolution, second derivatization, and curve-fitting on original protein spectra. The secondary structure frequency windows (α-helix, 1328–1289 cm−1; unordered, 1288–1256 cm−1; and β-sheets, 1255–1224 cm−1) have been obtained, and estimates of secondary structural contents are consistent with X-ray crystallography data for model proteins and parallel results obtained with the use of the amide I region. We have further applied the analysis to the structural change of calsequestrin upon Ca2+binding. Treatment of calsequestrin with 1 mM Ca2+results in the formation of crystalline aggregates accompanied by a 10% increase in α-helical structure, which is consistent with previous results obtained by Raman spectroscopy. Thus the amide III region of protein IR spectra appears to be a valuable tool in estimating individual protein secondary structural contents.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3