Transient in Situ Infrared Methods for Investigation of Adsorbates in Catalysis

Author:

Chuang Steven S. C.1,Brundage Mark A.1,Balakos Michael W.1,Srinivas Girish1

Affiliation:

1. Department of Chemical Engineering, The University of Akron, Akron, Ohio 44325-3906

Abstract

This paper reports the details of a high-pressure and -temperature in situ transmission infrared reactor cell and experimental approaches for investigation of the nature of adsorbates in CO hydrogenation and NO-CO reaction on Rh/SiO2 catalyst. The infrared cell used in this study allows easy assembling and reliable operation up to 773 K and 6.0 MPa. The structure and coverage of adsorbates during reaction are determined by an infrared spectrometer, and the composition of gaseous effluent from the infrared cell is monitored by a mass spectrometer. The steady-state 13CO step transient shows that gaseous CO rapidly exchanges with adsorbed CO, which is slowly converted to CH4 during CO hydrogenation at 513 K and 0.1 MPa. The pulsing CO study reveals that linear CO is more reactive than bridged CO during methane and CO2 formation, and bridged CO sites are blocked from CO disproportionation. Steady-state 13CO pulse transients show that the CO2 response leads the CO response, and Rh-NCO and Si-NCO are not involved in the formation of CO2 from CO during NO-CO reaction. The advantages and limitations of the in situ infrared and transient approaches for catalysis research will be discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3