Asynchronous Pulsed-Laser-Excited Fourier Transform Raman Spectroscopy and its Applications

Author:

Sakamoto Akira1,Furukawa Yukio1,Tasumi Mitsuo1,Masutani Koji1

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (A.S., Y.F., M. T.); and JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196, Japan (KM.)

Abstract

An asynchronous pulsed-laser-excited Fourier transform Raman spectrophotometer based on a conventional continuous-scan interferometer has been developed. The additional assembly required for pulsed-laser-excited measurements, which consists of a pulsed Nd:YAG laser, a gate circuit, and a low-pass filter, can be attached to any conventional FT-Raman spectrophotometer. The principle of the signal-processing of this method is almost the same as that of the asynchronous time-resolved Fourier transform infrared spectroscopy reported previously. This method does not require the synchronization between the Raman excitation and the sampling of the A/D converter. As an application of this method, it is demonstrated that the use of a pulsed laser and a gate circuit can give a significant increase in signal-to-noise ratios over continuous-wave measurements with the same average laser power. It is also shown that when a constant background (for example, thermal radiation from samples at high temperatures) or a long-lived background is present, the use of pulsed excitation and a gate circuit can effectively reduce the background. Moreover, pulsed excitation can be used for recording time-resolved Raman spectra by using an FT-Raman spectrophotometer. The time resolution is governed only by the width of the probe laser pulse. The potentiality of this method is demonstrated.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3