UV-Visible Spectral Library Search with Mixtures

Author:

Brown Chris W.1,Okafor Anne E.1,Donahue Steven M.1,Lo Su-Chin1

Affiliation:

1. Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881 (C.W.B., A.E.O.); Spectra-Tech Applied Systems, Annapolis, Maryland 21401 (S.M.D.); and United States Tobacco Company, Nashville, Tennessee 37203 (S.-C.L.)

Abstract

A library mixture search method originally developed for infrared spectra has been successfully applied to UV-visible spectra. This novel approach for searching a spectral library performs a principal component analysis (PCA) on the entire library of spectra for pure compounds. The library spectra are represented by their PCA scores, and the concentrations (assumed to be unity) are regressed onto these scores. The scores for an unknown spectrum projected onto the PCA basis set are multiplied by the regression matrix to predict pseudo-concentrations or composition indices. After the first pass through the library, a subgroup of the top 20 hits (10% of the library) is selected and the PCR analysis is repeated on this set to improve the selection process. Spectra of each of the individual target components are adaptively filtered from the subgroup of library spectra and from the unknown spectrum prior to the repeat of the PCR analysis. The application of the adaptive filter greatly improves the success rate on hitting the second and third components by removing the first hit during each pass through the library. Computation times for training and applying the Mix-Match algorithm are greatly reduced by pre-processing with Fourier Transforms. A 200-compound library could be trained in 45 min and searched in 9 s; a 20-compound subgroup could be adaptively filtered and searched in 37 s. Both components in 12 two-component mixtures and one component in each of two two-component mixtures were correctly identified; the algorithm failed on both components in only one out of 15 two-component mixtures. All three components were correctly identified in one three-component mixture, and one component was correctly identified in another three-component mixture.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3