Examination of Criteria for Local Model Principal Component Regression

Author:

Bakken Gregory A.1,Long Dixie R.1,Kalivas John H.1

Affiliation:

1. Department of Chemistry, Idaho State University, Pocatello, Idaho 83209

Abstract

In analytical chemistry, principal component regression (PCR) is widely used as a method for calibration and prediction. The motivation behind PCR is to select factors associated with predictive information and eliminate those associated with noise. The classical approach, referred to as top-down selection, chooses sequential factors based on singular value magnitudes, and the same factors are used for all future unknown samples; i.e., a global model is formed. The number of factors needed is often determined through cross-validation on the calibration samples or with an external validation set. Alternatively, a model developed specific to an unknown sample, i.e., a local model or sample-dependent model, could offer improved accuracy. The idea behind sample-dependent PCR is that factors associated with small singular values not included in a top-down PCR model can still contain relevant predictive information. This paper shows that local models generated by selecting factors on a sample-by-sample basis often reduce prediction errors compared with those for the global top-down model. However, evidence is also provided that supports the use of global top-down models. Several criteria are proposed and examined for selecting factors on a sample-dependent basis. Observations and conclusions presented are based on two near-infrared data sets.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3