Field Test of a Novel Microlaser-Based Probe for in situ Fluorescence Sensing of Soil Contamination

Author:

Bloch Jonathan1,Johnson Bernadette1,Newbury Nathan1,Germaine Jack1,Hemond Harry1,Sinfield Joe1

Affiliation:

1. Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood St., Lexington, Massachusetts 02173 (J.B., B.J., N.N.); and Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (J.G., H.H., J.S.)

Abstract

The use of lasers to induce fluorescence in environmental contaminants such as fuels offers the potential for real-time, in situ chemical characterization in a variety of environmental media. This paper describes the first reported use of a passively Q-switched, fiber-coupled microlaser in situ for fuel-contamination characterization in subsurface soil. A 266 nm microlaser-based probe mounted in a cone penetrometer was tested at an area contaminated by both aviation and heating fuels. By examining the spectral and temporal fluorescence characteristics as the probe was pushed into soil, we identified BTEX compounds, as well as moderate-weight and heavy aromatic hydrocarbons, and were able to map an underground contamination plume in real time. Specifically, BTEX compounds were identified by their unique fluorescence signatures (wavelengths less than approximately 315 nm and lifetimes less than 7 to 10 ns) and by comparison with extensive laboratory studies of BTEX and fuel-contaminated soils. These tests demonstrate that the microlaser-based probe offers the potential for in situ, real-time characterization of soils and groundwater in a compact, inexpensive package.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3