Measurement of pH in Whole Blood by Near-Infrared Spectroscopy

Author:

Alam M. Kathleen1,Rohrscheib Mark R.1,Franke James E.1,Niemczyk Thomas M.1,Maynard John D.1,Robinson M. Ries1

Affiliation:

1. Sandia National Laboratories, MS 0342, Albuquerque, New Mexico 87185 (M.K.A.); Rio Grande Medical Technologies, Inc., 800 Bradbury SE, Suite 217, Albuquerque, New Mexico 87106 (J.E.F., J.D.M., M. Ries R.); Department of Chemistry, University of New Mexico, Clark Hall 103, Albuquerque, New Mexico 87131 (T.M.N.); and University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131 (Mark R.R.)

Abstract

Whole blood pH has been determined in vitro by using near-infrared spectroscopy over the wavelength range of 1500 to 1785 nm with multivariate calibration modeling of the spectral data obtained from two different sample sets. In the first sample set, the pH of whole blood was varied without controlling cell size and oxygen saturation (O2 Sat) variation. The result was that the red blood cell (RBC) size and O2 Sat correlated with pH. Although the partial least-squares (PLS) multivariate calibration of these data produced a good pH prediction cross-validation standard error of prediction (CVSEP) = 0.046, R2 = 0.982, the spectral data were dominated by scattering changes due to changing RBC size that correlated with the pH changes. A second experiment was carried out where the RBC size and O2 Sat were varied orthogonally to the pH variation. A PLS calibration of the spectral data obtained from these samples produced a pH prediction with an R2 of 0.954 and a cross-validated standard error of prediction of 0.064 pH units. The robustness of the PLS calibration models was tested by predicting the data obtained from the other sets. The predicted pH values obtained from both data sets yielded R2 values greater than 0.9 once the data were corrected for differences in hemoglobin concentration. For example, with the use of the calibration produced from the second sample set, the pH values from the first sample set were predicted with an R2 of 0.92 after the predictions were corrected for bias and slope. It is shown that spectral information specific to pH-induced chemical changes in the hemoglobin molecule is contained within the PLS loading vectors developed for both the first and second data sets. It is this pH specific information that allows the spectra dominated by pH-correlated scattering changes to provide robust pH predictive ability in the uncorrelated data, and visa versa.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3