Surface-Enhanced Fluorescence on SiO2-Coated Silver Island Films

Author:

Tarcha Peter J.1,Desaja-Gonzalez J.1,Rodriguez-Llorente S.1,Aroca R.1

Affiliation:

1. Hospital Products Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-3500, U.S.A. (P.J.T.); and Materials and Surface Science Group, University of Windsor, Windsor, Ontario, N9C 3P4, Canada (J.D., S.R., R.A.)

Abstract

Fluorescence is one of the molecular spectroscopic properties that is enhanced by placing the molecule on the rough surface of a coinage metal. The surface-enhanced fluorescence (SEF) can be directly observed in steady-state fluorescence experiments. The observations are the results of a delicate balance between the enhanced emission and the quenching due to energy transfer to nonradiative surface plasmons. In the present report, SiO2-coated silver films were fabricated at varying dielectric thickness. The surface of the films was analyzed with the use of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM confirms the surface roughness and XPS analysis indicates that the SiO2 coverage was successful. SEF and SERS (surface-enhanced Raman scattering) were observed on active 6, 10, and 14 nm silver films coated with SiO2. Similar results were obtained with a 6 nm silver film coated with 6 nm SiO. The SEF work was carried out on fluorescent molecules with different quantum yield, and the typical enhancement factor obtained for the fluorescent signal was approximately 10. Both the SiO2 and SiO overlayers provide stable surfaces with well-defined hydrophilic properties. Such stable constructions have applicability towards the advancement of SERS and SEF as routine analytical techniques in bio- and chemical sensors.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3