Multichannel FT-Raman Spectroscopy: Noise Analysis and Performance Assessment

Author:

Zhao Jun1,McCreery Richard L.1

Affiliation:

1. Department of Chemistry, The Ohio State University, 100 West 18th Ave., Columbus, Ohio 43210

Abstract

A Raman spectrometer based on forming an interferogram on a charge-coupled device (CCD) detector is evaluated further with respect to signal-to-noise ratio (SNR), stability, response correction, and resolution. The multichannel Fourier transform technique differs fundamentally from dispersive spectrometers and FT-Raman systems based on Michelson interferometers. Changes in entrance optics permitted multitrack operation and an improvement in collection efficiency. Both hardware and a more facile software procedure were examined for correction of noise caused by nonuniformity of the CCD response. The instrumental linewidth (ILW) for the multichannel Fourier transform (MCFT) system examined here was 14 cm−1 (full width at half-maximum), close to the 13.5 cm−1 predicted theoretically. An optical heterodyne method was used to downshift the observed Raman features and further reduce the ILW to 8 cm−1. The unheterodyned MCFT spectrometer has a lower SNR than do dispersive systems for most samples, but has the advantages of frequency precision and large throughput. Several applications of MCFT are discussed, including examination of photolabile samples, multiple sample monitoring with fiber optics, and identification of MCFT spectra with a dispersive library.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3