Increasing the Quantitative Credibility of Open-Path Fourier Transform Infrared (FT-IR) Spectroscopic Data, with Focus on Several Properties of the Background Spectrum

Author:

Shao Limin1,Wang Wanping1,Griffiths Peter R.2,Leytem April B.3

Affiliation:

1. Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

2. Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA

3. U.S. Department of Agriculture, Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA

Abstract

The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared spectroscopy (OP/FT-IR) data, and consequently, the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-path background measured with the lowest amplifier gain could significantly reduce noise in the calculated absorbance spectrum, by at least 30% in our case. We demonstrated that by using a short-path background, data analysis is more resistant to interferences such as wavenumber shift or resolution alteration that occurs as a consequence of aging hardware or misalignment. We discussed a systematic error introduced into quantitative analyses by the short-path background and developed a procedure to correct that error. With this correction approach, a short-path background established five years ago was still found to be valid. By incorporating these findings into the protocol for quantitative analysis, we processed the measurements with two OP/FT-IR instruments set up side by side in the vicinity of a large dairy farm, to monitor NH3, CH4, and N2O. The two sets of calculated concentrations showed high agreement with each other. The findings of our investigations are helpful to atmospheric monitoring practitioners of OP/FT-IR spectroscopy and could also be a reference for future amendments to the protocols outlined in the guidelines of the U.S. Environmental Protection Agency, the American Society for Testing and Materials, and the European Committee for Standardization.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3