Laser-Enhanced Ionization in Microwave-Induced Plasmas

Author:

Lysakowski Richard S.1,Dessy Raymond E.1,Long Gary L.1

Affiliation:

1. Chemistry Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

Laser-Enhanced Ionization (LEI) signals have been detected for Na, Li, and Ba analytes in a microwave-induced plasma (MIP). A 300-mW continuous-wave (cw) dye laser pumped by a 5-W argon-ion laser was used to promote measurably increased ionization rates for these elements. A low-power, high-efficiency microwave plasma at 1 atmosphere with nitrogen and nitrogen-containing support gas was employed as the atom reservoir. The effects of varying applied microwave power, support gas composition, electrode voltage, and geometry were studied and results are given. The experimental variables that most significantly affect LEI signal intensity are: (1) electrode geometry, spacing, voltage, and distance above the cavity; (2) applied microwave power; (3) gas composition in an argon and nitrogen mixture; and (4) laser intensity. Experimental results are presented from the studies of Na LEI signals as a function of each one of these variables. Preliminary analytical studies yield Na detection limits in the low ng/mL range, showing this method to be competitive with other laser-based ionization methods.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microwave Plasma Systems in Optical and Mass Spectrometry;Encyclopedia of Analytical Chemistry;2023-06-30

2. Microwave Plasma Systems in Optical and Mass Spectroscopy;Encyclopedia of Analytical Chemistry;2016-09-16

3. Microwave Plasma Systems in Optical and Mass Spectroscopy;Encyclopedia of Analytical Chemistry;2011-12-15

4. Microwave-Induced Plasma Systems in Atomic Spectroscopy;Encyclopedia of Analytical Chemistry;2000-10-30

5. Atomic Spectrometry Update—Environmental Analysis;J. Anal. At. Spectrom.;1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3