Affiliation:
1. Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
Abstract
The electron number density of atmospheric-pressure argon and helium microwave-induced plasmas operating in the power regime of 100 to 450 W has been examined. The resulting data demonstrate a trend of increasing electron density, ne, for both the Ar and He microwave-induced plasmas as forward power is increased. An examination of ne vs. plasma observation position demonstrates a maximum in ne at the central plasma observation position for both plasmas. Further, spatial dependence of electron density appears to be more pronounced at high power levels. Nebulization of aqueous solutions containing varying concentrations of an easily ionizable element into the Ar microwave-induced plasma, MIP, demonstrates little if any effect on ne. Moreover, this observation can be explained by the fact that there is a far greater quantity of water than easily ionizable element being introduced into the plasma in a given time period. Thus the electron contribution resulting from water degradation products in the plasma far outweighs that from the relatively small amount of easily ionizable element present. This last point is further substantiated by an examination of the Ar MIP with and without solution nebulization.
Subject
Spectroscopy,Instrumentation
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献