Multivariate Calibration of Infrared Spectra for Quantitative Analysis Using Designed Experiments

Author:

Cahn Frederick1,Compton Senja1

Affiliation:

1. Bio-Rad Laboratories, Digilab Division, 237 Putnam Avenue, Cambridge, Massachusetts 02139

Abstract

The principal component regression (PCR) and partial least-squares (PLS) methods are used to calibrate and validate models for quantitative prediction of the composition of mixtures from FT-IR spectra. An experimental system of two- and three-component mixtures of xylene isomers was sampled with the use of statistical experimental designs. For two-component mixtures, the prediction error of independent validation samples decreased with increasing numbers of design points in the calibration. Four design points were needed to achieve a prediction accuracy of 0.0013 weight fraction. For three-component mixtures, a Scheffé {3,3} simplex lattice design, which has ten design points, achieved an equivalent accuracy of 0.002 weight fraction. There was little difference in performance between PLS and PCR computations. The results demonstrate the application of statistical methodology to the calibration of infrared spectra and show the importance of including an adequate number of samples in the calibration. The F test on the residual spectrum is shown to be a valuable tool for the identification of spurious data.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linearity in Calibration—Act II Scene III;Chemometrics in Spectroscopy;2018

2. Linearity in Calibration—Act II Scene III—Summary of Reader Responses, and Our Commentary on Those Responses;Chemometrics in Spectroscopy;2018

3. Process control with compact NMR;TrAC Trends in Analytical Chemistry;2016-10

4. Quantitative Online NMR Spectroscopy in a Nutshell;Chemie Ingenieur Technik;2016-03-02

5. Linearity in Calibration: Act II Scene III;Chemometrics in Spectroscopy;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3