A Comparative Study of the Photoacoustic Spectra of Lanthanide and Actinide Oxides

Author:

Heinrich G.1,Güsten H.1,Ache H. J.1

Affiliation:

1. Kernforschungszentrum Karlsruhe, Institut für Radiochemie, Postfach 3640, 7500 Karlsruhe, FR Germany

Abstract

The absorption spectra of thirteen sintered trivalent lanthanide oxides (La to Lu) and six actinide dioxides (Th to Cm) have been measured by photoacoustic spectroscopy. Though both series of elements have in common successive filling of the 4f and 5f shells, respectively, the absorption spectra of the two classes of oxides are very different. While absorption spectra of the thirteen trivalent lanthanide oxides show narrow weak absorption bands and lines in the uv, visible, and near-IR wavelength ranges due to internal 4f n → 4f n transitions between the numerous energy levels of the Xe 4f n configuration, the absorption spectra of the actinide oxides display very intense and broad absorption bands extending from the ultraviolet to the visible and sometimes to the infrared. In the absorption spectra of the lanthanide oxides of higher valencies, such as Tb4O7 or Pr6O11, the sharp absorption lines cannot be detected, as the much stronger 4f n → 4f n–15d transitions overlap the weak 4f n → 4f n transitions. The conclusion is that the 5f n electrons in the actinide oxides are not as well localized as the 4f n electrons of the lanthanide sesquioxides. The 5f electrons probably participate in bonding, e.g., in electron transfer processes from a molecular oxygen orbital to a partly filled or empty 5f electron state of the oxidizing central atom which gives rise to intensive broad absorption bands in the ultraviolet and visible.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3