Measurement of Phase Transitions by Photothermal Radiometry: The Semiconductor-To-Metal Transition of Vanadium(IV) Oxide, VO2

Author:

Pekker Sandor1,Eyring Edward M.1

Affiliation:

1. Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Abstract

A new experimental method of investigating phase transitions of solids, photothermal radiometry, is described. The effects of modulation frequency, laser intensity, and heating-cooling rates on the first-order semiconductor-to-metal phase transition of a microcystalline vanadium dioxide sample have been studied. The PTR signal increases with temperature in both phases, and a negative peak occurs at the phase transition. The intensity of signal is inversely proportional to the square root of frequency at laser-beam chopping frequencies lower than 100 Hz, indicating that the sample is thermally thick, and the signal is controlled by the thermal conductivity and the heat capacity and is independent of the optical properties of the material. The relative peak intensity decreases slightly in the low-frequency range with increasing frequency and more sharply at higher frequencies. The measured temperature of the phase transition decreases linearly with the intensity of illuminating light, from which the static component of the temperature rise at the surface can be determined. From the increase of linewidth with the laser intensity one may estimate the amplitude of the temperature modulation at the surface. The measured temperature of the phase transition increases with increasing heating rate and decreases with increasing cooling rates. The effects of variable light intensity and heating-cooling rates can be eliminated by extrapolation, and the exact temperature of the phase transition is obtained.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3