Simultaneous Detection of One-Dimensional Laser-Induced Fluorescence or Laser Light Scattering Images in Plasmas

Author:

Olesik John W.1,Williamsen Eric J.1

Affiliation:

1. Department of Chemistry, Venable and Kenan Laboratories, CB#3290, University of North Carolina, Chapel Hill, North Carolina 27599-3290

Abstract

An instrumental system to simultaneously detect one-dimensional atomic or ionic fluorescence images is described. The instrument can also be used to acquire laser light scattering images or laterally resolved emission images. The fluorescence, scattering, or emission image passes through a monochromator and is re-imaged on an intensified diode array detector. Measurement of spatially resolved ground-state populations in inductively coupled plasmas is discussed. Interpretation of the fluorescence data obtained under different plasma operating conditions is considered. Results with the use of laser-induced fluorescence imaging to study the effect of sample transport rate, concomitant species-induced matrix effects, and modulated power plasmas are discussed. Comparison of fluorescence and emission images shows the complementary nature of the information provided by each. Laser light scattering off intact droplets or particles in a 1.0-kW inductively coupled plasma is discussed. Means to minimize the scattering signal are evaluated. Detection of laser light scattering images is discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3