Affiliation:
1. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1
Abstract
The properties of a Fourier transform infrared (FT-IR) spectrometer designed around a polarizing Michelson interferometer (PMI) are analyzed with respect to applications in both conventional absorption as well as polarization spectroscopies. The PMI design is that of Martin and Puplett and consists of a metal grid polarizing beam splitter combined with rooftop retromirrors set to rotate the polarization direction in each beam by 90°. If used in conjunction with additional grid polarizers, positioned according to application, the result is an FT-IR instrument that can function both as a dual beam absorption spectrometer and as a polarization spectrometer. Operating in the former mode, the instrument is predicted to achieve speeds comparable to those achievable using a nonpolarizing dual beam Michelson interferometer but to cover a much wider spectral range due to the achromatic nature of metal grid polarizing beam splitters. In the latter mode, it is predicted to give at least double the effective throughput achievable with conventional instruments equipped with external polarization modulating optics, and again to cover a much wider spectral range. It would extend the capability of determining circular dichroism spectra into the far IR (down to ∼3 cm−1) for the first time. With the development of a process for forming a metal grid polarizer of fine spacing (∼0.1 μm) on a KBr substrate, the instrument would be capable of covering the spectral range 25 000 to 3 cm−1 or lower using only two beam splitters, i.e., in two ranges: 25 000 to 450 cm−1 using a KBr-supported metal grid, and 600 to 3 cm−1 or less using an unsupported wire grid.
Subject
Spectroscopy,Instrumentation
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献