Affiliation:
1. Department of Chemistry and Biochemistry, Cooperative Institute for Research in Environmental Sciences, Campus Box 215, University of Colorado, Boulder, Colorado 80309-0215
Abstract
The mechanism of cooling in sheath-flow-focused supersonic jet expansions is examined. Cooling is found to be strongly influenced by the sheath gas flow properties but independent of the carrier gas in the sample stream. These results indicate that considerable turbulence and mixing between the sheath and sample gases occur downstream from the orifice. However, mixing cannot be complete, since, relative to results with a conventional jet expansion, a substantial enhancement of analyte is obtained along the centerline of a sheath-flow-focused jet expansion. Spectral broadening at “high” analyte mass flow rates within the sample stream is found to arise from inefficient cooling. There are limits to both how large and how small the nozzle orifice can be. Small orifices result in spectral broadening, even at very low analyte mass flow rates. Large orifices may have Reynolds numbers sufficient to cause turbulent flow, which degrades the focusing effect. The optimum nozzle geometry and gas flow conditions for sheath-flow-focused jet expansions are discussed.
Subject
Spectroscopy,Instrumentation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献