Optical Detection of Laser-Induced Ionization: A Study of the Time Decay of Strontium Ions in the Air-Acetylene Flame

Author:

Turk G. C.1,Omenetto N.1

Affiliation:

1. Joint Research Center, Chemistry Division, Ispra (Varese), Italy

Abstract

Strontium atoms in the air-acetylene flame are directly photoionized in two steps provided by one dye laser tuned at the resonance ground-state transition (460.733 nm) and by the excimer pump beam at 308 nm, partially split from the amplifier section of the dye laser. The ions produced are then monitored by a third laser beam, colinear and counterpropagating in the flame, tuned to an ionic fluorescence transition and delayed in time with respect to the ionizing beams. In this way a fast decay, which is not affected by variations in the electron number density in the flame and therefore attributed to ion chemistry, and a slow decay, due to recombination, could clearly be observed. The fast decay is affected by variations in the flame stoichiometry and the slow decay by the number density of electrons in the flame, as shown by the addition of varying concentrations of an easily ionized element like caesium. The advantages of this optical probing of the laser-induced ionization in flames are discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3